Minimum Cost Homomorphism Dichotomy for Locally In-Semicomplete Digraphs
نویسندگان
چکیده
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). In the minimum cost homomorphism problem we associate costs ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and the cost of a homomorphism f is defined ∑ u∈V (G) cf(u)(u) accordingly. Here the minimum cost homomorphism problem for a fixed digraph H , denoted by MinHOM(H), is to check whether there exists a homomorphism of G to H and to obtain one of minimum cost, if one does exit. The minimum cost homomorphism problem is now well understood for digraphs with loops. For loopless digraphs only partial results are known. In this paper, we find a full dichotomy classification of MinHom(H), when H is a locally in-semicomplete digraph. This is one of the largest classes of loopless digraphs for which such dichotomy classification has been proved. This paper extends the previous result for locally semicomplete digraphs.
منابع مشابه
Minimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...
متن کاملMinimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...
متن کاملMinimum Cost Homomorphisms to Semicomplete Bipartite Digraphs
For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide, for an input graph D with costs ci(u), u...
متن کاملComplexity of the Minimum Cost Homomorphism Problem for Semicomplete Digraphs with Possible Loops
For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed digraph H , the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H). An optimization version of the homomorphism problem was motivated by a realworld problem in defence logistics and was introduced in ...
متن کاملThe complexity of the minimum cost homomorphism problem for semicomplete digraphs with possible loops
For digraphs D and H , a mapping f : V (D) → V (H) is a homomorphism of D to H if uv ∈ A(D) implies f (u)f (v) ∈ A(H). For a fixed digraph H , the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H). An optimization version of the homomorphism problemwasmotivated by a real-world problem in defence logistics and was introduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008